

Elisangela do Prado Oliveira

Caracterização bio-físico-químico-mineralógica e micromorfológica de um perfil de alteração de granitognaisse de Curitiba, PR

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil.

> Orientador: Tácio Mauro Pereira de Campos Co-orientadores: Franklin dos Santos Antunes Denise Maria Mano Pessoa

Rio de Janeiro Março de 2006

Elisangela do Prado Oliveira

Caracterização bio-físico-químico-mineralógica e micromorfológica de um perfil de alteração de granitognaisse de Curitiba, PR

Dissertação apresentada ao Programa de Pósgraduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil. Aprovada pela Comissão Examinadora abaixo assinada.

> Tácio Mauro Pereira de Campos Presidente/Orientador Departamento de Engenharia Civil - PUC-Rio

> Franklin do Santos Antunes Co-orientador Departamento de Engenharia Civil - PUC-Rio

> Denise Maria Mano Pessoa Co-orientadora Departamento de Engenharia Civil - PUC-Rio

> Cláudio Palmeiro do Amaral Departamento de Engenharia Civil - PUC-Rio

> > George de Paula Bernardes UNESP-Guaratinguetá

> > > Sérgio Tibana UENF

José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 31 de março de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Elisangela do Prado Oliveira

Graduou-se em Engenharia Civil pela Universidade Federal do Paraná - UFPR em 2003. Realizou estágio de pesquisa no LAME/LACTEC atuando no Laboratório de Mecânica dos Solos e auxiliando em projetos de pesquisa de geotecnia, em 2002/2003. Ingressou no Curso de Mestrado em Engenharia Civil – Geotecnia no início de 2004.

Ficha Catalográfica

Oliveira, Elisangela do Prado

Caracterização bio-físico-químico-mineralógica e micromorfológica de um perfil de alteração de granitognaisse de Curitiba, PR / Elisangela do Prado Oliveira ; orientador: Tácio Mauro Pereira de Campos ; coorientadores: Franklin dos Santos Antunes, Denise Maria Mano Pessoa.– Rio de Janeiro : PUC, Departamento de Engenharia Civil, 2006.

197 f. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil – Teses. 2. Perfil de intemperismo. 3. Solo residual. 4. Granito-gnaisse. 5. Propriedades bio-físico-químicas. 6. Mineralogia e micromorfologia. I. Campos, Tácio Mauro Pereira de. II. Antunes, Franklin dos Santos. III. Pessoa, Denise Maria Mano. IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. V. Título.

A Helio e Angela cujos exemplos são a base deste caminho. Pelo apoio incondicional de ontem, hoje e sempre dedico esta dissertação. Ao Helinho, por acreditar, torcer e incentivar.

Agradecimentos

Ao Professor Tácio Mauro Pereira de Campos pela dedicação, disponibilidade, atenção e paciência, a quem sempre terei como referência de amor ao trabalho.

Ao Professor Franklin dos Santos Antunes pelos conselhos, estímulo, exemplo e por acreditar no meu potencial.

À Professora Denise Maria Mano Pessoa pela orientação, companheirismo e cumplicidade.

Ao Laboratório de Materiais e Estruturas – LAME, unidade integrante do Instituto para Tecnologia e Desenvolvimento – LACTEC, pelo suporte fundamental dado ao estudo. Na pessoa do Professor Paulo Roberto Chamecki, por quem tenho uma admiração e carinho especiais, estendo meu agradecimento a todos os integrantes do LAME.

Aos estagiários do LAME/LACTEC, em especial a Pedro Thá, Marcelo Miqueletto, Carla Alessi, Hylltonn Bazan, Liz Mara Penido, Guilherme Slongo, Carolina Pavan e Talita Scussiato, que participaram ativamente da execução do programa experimental, juntamente com os técnicos Celso Amarante e Valdevan Santos.

À Roberta Boszczowski e Laryssa Ligocki, imprescindíveis para a realização deste trabalho, pela acolhida, amizade e principalmente, pela confiança.

À Alessander Kormam, que primeiramente foi meu professor e que hoje considero como um grande amigo, por me introduzir no ramo da Geotecnia e por sempre me incentivar a "correr atrás" dos meus ideais.

À geógrafa Ana Valéria Freire Allemão Bertolino e ao geólogo Luiz Carlos Bertolino, ambos do Departamento de Geografia da Faculdade de Formação de Professores – UERJ, por disponibilizarem seu tempo para auxiliar em toda a parte de micromorfologia.

Ao geólogo Rubem Porto Jr., do Departamento de Geociências da UFRRJ, pela confecção das lâminas petrográficas e auxílio em toda a parte da petrografia.

À geóloga Joedy Patrícia Cruz Queiroz, doutoranda do Departamento de Metalurgia da PUC-Rio, pela ajuda na descrição das lâminas de solo.

Ao Laboratório de Difratometria de raios–X, do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio, em especial ao Ronaldo Silva pela colaboração neste ensaio.

Aos funcionários do Laboratório de Geotecnia e Meio Ambiente da PUC-Rio: "Seu" José, Engenheiro William, Josué e Amaury, por estarem sempre dispostos a ajudar. Em especial às "meninas da micro": Anna Carolina Magdaleno, Lyana Guerra e Ana Luiza Ramos, pelo esforço e empenho na execução das análises microbiológicas.

Aos funcionários do Departamento de Engenharia Civil da PUC-Rio, pelo profissionalismo. Em especial a Rita de Cássia e Ana Roxo.

Aos meus amigos da PUC-Rio, pela ajuda e motivação. Em especial a: Maria Bernadete Lopes, Ana Carolina Campos, Tânia Pessoa, Viviana Torralba, Mônica Moncada e Alexandre Saré.

Um agradecimento especial a Luciana Vieira, Taíse Carvalho, Vinícius Aguiar e Andréa Cynthia, com quem convivi de forma ainda mais intensa nestes dois anos, e a quem tenho um carinho especial. Pela convivência, pelo aprendizado e pela oportunidade de descobrir como podemos ser pessoas melhores.

À Deus pelo dom da vida.

Ao PRONEX-Rio/CNPq/FAPERJ pelo apoio financeiro.

Oliveira, Elisangela do Prado; Campos, Tácio Mauro Pereira de; Antunes, Franklin dos Santos; Pessoa, Denise Maria Mano. **Caracterização biofísico-químico-mineralógica e micromorfológica de um perfil de alteração de granito-gnaisse de Curitiba, PR.** Rio de Janeiro, 2006. 197p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Desde o século passado estuda-se no Brasil a següência de camadas resultante da decomposição de uma rocha. Estes perfis de alteração são desde então objetos de estudo de vários autores pela grande importância que apresentam na Engenharia Geotécnica, principalmente em países de clima tropical, como o Brasil. Os diferentes tipos e graus de intemperismo que ocorrem em um perfil de solo residual afetam o comportamento geotécnico dos materiais resultantes. O conhecimento detalhado de sua gênese pode contribuir para um melhor entendimento do seu comportamento geomecânico. A presente dissertação visa contribuir para uma definição de características bio-físicoquímico-mineralógicas e microestruturais que possam servir como indicadoras da evolução do grau de intemperismo de um dado perfil de solo residual. Tal tipo estudo compreende parte de investigações de requeridas para o desenvolvimento de um modelo de comportamento de solos residuais onde seja possível incluir efeitos de grau de intemperização. Investigações neste sentido estão sendo efetuadas dentro do projeto PRONEX-Rio intitulado "Geotecnia Aplicada à Avaliação, Prevenção e Remediação de Problemas Ambientais", em desenvolvimento junto ao Núcleo de Geotecnia Ambiental do DEC/PUC-Rio e que se enquadra na linha de pesquisa Geotecnia Ambiental do Setor de Geotecnia do DEC/PUC-Rio.

Palavras-chave

Perfil de intemperismo; solo residual; granito-gnaisse; propriedades biofísico-químicas; mineralogia e micromorfologia. Oliveira, Elisangela do Prado; Campos, Tácio Mauro Pereira de; Antunes, Franklin dos Santos; Pessoa, Denise Maria Mano. **Bio-physicalchemical-mineralogical and micromorphological characterization of a granite-gneiss weathering profile from Curitiba, PR.** Rio de Janeiro, 2006. 197p. MSc. Dissertation – Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

Since the last century, the resultant layers sequence of rock decomposition is studied in Brazil. For the great importance that present in Geotechnical Engineering, these alteration profiles are objects of study of some authors, since then, mainly in countries of tropical climate, as Brazil. The different weathering types and degrees that occur in a residual soil profile affect the geotechnical behavior of the resultant materials. The knowledge detailed of its gênesis can contribute for the better agreement of its geomecanical behavior. The present dissertation aims at to contribute for a definition of bio-physical-chemicalmineralogical and micromorphological characterization that can serve as indicating of the evolution of weathering degree of a residual soil profile. This study is a part of required inquiries for development of a residual soil behavior model where it is possible to include effect of weathering degree. This investigation are being effected in the project PRONEX-Rio intitled "Geotechnic Applied to the Evaluation, Prevention and Remediation of Ambient Problems", in development in the Nucleus of Environmental Geotechnic of DEC/PUC-Rio and it is in the research line of Environmental Geotechnic of the Sector DEC/PUC-Rio.

Keywords

Weathering profile, residual soil, granite-gneiss, bio-physical-chemical properties, mineralogy and micromorphology.

Sumário

1 Introdução	24
2 Perfis de intemperismo	27
2.1. Fatores que influenciam o intemperismo	32
2.2. Índices de avaliação do grau de intemperismo	33
3 Área de estudo e amostragem	36
3.1. Meio Físico	36
3.1.1. Localização	36
3.1.2. Aspectos climáticos e vegetação	38
3.1.3. Geologia e geomorfologia	39
3.2. Amostragem	40
3.2.1. Localização, coleta e denominação das amostras de	
solo	40
3.2.2. Sondagem	44
3.2.3. Descrição morfológica dos solos	47
3.2.4. Descrição macroscópica dos testemunhos de	
sondagem	50
4 Investigações de laboratório	56
4.1. Caracterização física	64
4.1.1. Propriedades índice	64
4.1.2. Porosimetria de mercúrio	65
4.2. Caracterização química	68
4.2.1. Análise química total	68
4.2.2. Análise química parcial	69
4.2.3. pH e matéria orgânica	70
4.3. Análises mineralógicas	71
4.3.1. Observação em lupa binocular	71
4.3.2. Difração de raios-X	72

433 Petrografia	73
4.3.4 Micromorfologia dos solos	74
4.4 Análises microbiológicas	75
4 4 1 Contagem de microrganismos viáveis e cultiváveis	78
4 4 2 Atividade microbiana degradadora total	80
4.5. Ensaio de desagregabilidade	81
4.6. Ensaios de cisalhamento direto	82
5 Apresentação e análise dos resultados	87
5.1. Caracterização física	87
5.1.1. Propriedades índice	87
5.1.2. Porosimetria de mercúrio	101
5.2. Caracterização química	106
5.2.1. Análise química total	106
5.2.2. Análise química parcial	110
5.2.3. pH e matéria orgânica	113
5.3. Análises mineralógicas e microestruturais	116
5.3.1. Observação em lupa binocular	116
5.3.2. Difração de raios-X	117
5.3.3. Petrografia	125
5.3.4. Micromorfologia dos solos	138
5.3.5. Evolução microestrutural do perfil	150
5.4. Análises microbiológicas	152
5.5. Ensaio de desagregabilidade	155
5.6. Ensaios de cisalhamento direto	161
6 Discussão dos resultados	170
6.1. Relação entre propriedades físicas e propriedades químicas	170
6.2. Relação entre propriedades físicas, químicas, mineralógicas	
e micromorfológicas	174
6.3. Relação entre propriedade físicas, químicas, mineralógicas e	1
micromorfológicas e a resistência ao cisalhamento	177

6.4. Relação entre propriedade físicas, químicas, mineraló	gicas e
micromorfológicas e as análises microbiológicas	182
7 Conclusões e sugestões para trabalhos futuros	184
7.1. Conclusões	184
7.2. Sugestões para trabalhos futuros	187
Referências bibliográficas	188
APÊNDICE I Classificação dos poros	192
I.1. Dimensão dos Poros (Castro, 2002)	192
I.2. Forma dos poros (Castro, 2002)	193
APÊNDICE II Pedalidade	194
II.1. Grau de pedalidade (Castro, 2002)	194
II.2. Forma dos pedes (Castro, 2002)	195
II.3. Textura dos pedes (Castro, 2002)	195
II.4. Distribuição relativa dos pedes (Castro, 2002)	196
ANEXO I Boletim de sondagem	197

Lista de figuras

Figura 2.1 – Perfil de alteração proposto por Deere e Patton (1971)	28
Figura 2.2 - Perfil de alteração típico de rochas metamórficas e granític	as
em regiões de relevo suave (Pastore, 1995)	29
Figura 2.3 – Perfil de solo proposto na presente dissertação	29
Figura 2.4 – Perfil de intemperismo típico de solo residual segundo Littl	е
(1969)	31
Figura 3.1 – Localização do talude estudado	37
Figura 3.2 – Vista geral do talude	37
Figura 3.3 – Talude estudado	38
Figura 3.4 – Mapa geológico da área estudada (COMEC, 1985)	40
Figura 3.5 – Andaime para coleta de amostras de solo	41
Figura 3.6 – Coleta de amostras indeformadas para ensaios de	
laboratório	42
Figura 3.7 – Poço para coleta de blocos indeformados	43
Figura 3.8 – Perfil estudado dividido em cinco camadas a partir de suas	5
características tátil-visuais	44
Figura 3.9 – Procedimento de sondagem para coleta de amostras de	
rocha	45
Figura 3.10 – Testemunhos de rocha recuperados	46
Figura 3.11 – Testemunho de rocha obtido a partir da sondagem	46
Figura 3.12 – Solo Marrom	47
Figura 3.13 – Solo Vermelho	48
Figura 3.14 – Solo Laranja	49
Figura 3.15 – Solo Amarelo	49
Figura 3.16 – Solo Branco	50
Figura 3.17 – Testemunho de sondagem R 01	52
Figura 3.18 – Testemunho de sondagem R 02	53
Figura 3.19 – Testemunho de sondagem R 03	54

Figura 4.1 – Princípio da porosimetria por intrusão de mercúrio	67
Figura 4.2 – Porosizer 9320 Micromeritics	67
Figura 4.3 – Bloco de solo sendo moldado para impregnação	74
Figura 4.4 – Impregnação do bloco e preparação da lâmina	75
Figura 4.5 – Esquema geral da técnica de Pour Plate	
(Magdaleno, 2005)	79
Figura 4.6 – Técnica de derramamento em profundidade ou Pour Plate	79
Figura 4.7 – Moldagem dos corpos-de-prova a partir das amostras	
indeformadas retiradas do talude com auxílio do tubo de PVC	81
Figura 4.8 – Prensa Shear Trac II utilizada nos ensaios – LAME/LACTE	EC
 Laboratório de Materiais e Estruturas, Centro Politécnico da UFPR 	84
Figura 4.9 – Detalhe da caixa de cisalhamento da Prensa Shear Trac II	85
Figura 5.1 – Curvas granulométricas	94
Figura 5.2 – Propriedades índice ao longo do perfil	96
Figura 5.3 – Atividade dos solos	98
Figura 5.4 – Variação de d com o índice de vazios	99
Figura 5.5 – Variação do grau de saturação com o teor de umidade par	a
os 5 diferentes solos com suas respectivas tendências lineares	100
Figura 5.6 – Proposta de uma nova divisão das camadas com base na	
variação linear do grau de saturação com o teor de umidade	100
Figura 5.7 - Distribuição acumulativa dos diâmetros dos poros (a) para	os
solos; (b) para as rochas	101
Figura 5.8 - Distribuição incremental dos diâmetros dos poros (a) para	os
solos; (b) para as rochas (as faixas de micro, meso e macroporos	
apresentadas no gráfico se referem a classificação da IUPAC)	104
Figura 5.9 - Variação dos principais índices químicos do perfil estudade	0
ao longo da profundidade	108
Figura 5.10 – Teor de argila x índice de intemperismo \mathbf{ba}_1 ao longo do	
perfil	109

55

Figura 5.11 – Variação do índice de perda ao fogo ao longo da	
profundidade	109
Figura 5.12 – Variação da fração fina do solo ao longo da profundidad	e110
Figura 5.13 – Variação de Ki e Kr com a profundidade	113
Figura 5.14 – Variação do pH dos solos com a profundidade	115
Figura 5.15 – Variação da porcentagem de matéria orgânica com a	
profundidade	116
Figura 5.16 - Difratograma do solo Marrom (fração silte - amostra	
2.4108.05) sem tratamento	119
Figura 5.17 – Difratograma do solo Vermelho (fração argila - amostra	
2.4523.05) sem tratamento	119
Figura 5.18 – Difratograma do solo Laranja (fração silte - amostra	
2.4528.05) sem tratamento	120
Figura 5.19 – Difratograma do solo Amarelo (fração silte - amostra	
2.4521.05) sem tratamento	120
Figura 5.20 – Difratograma do solo Branco (fração silte - amostra	
2.4524.05) com tratamento	121
Figura 5.21 – Difratograma da rocha (fração total pulverizada - amostr	а
R 01) sem tratamento	122
Figura 5.22 – Difratograma da rocha (fração total pulverizada - amostr	а
R 02) sem tratamento	122
Figura 5.23 – Difratograma da rocha (fração total pulverizada - amostr	а
R 03) sem tratamento	123
Figura 5.24 – Difratograma da rocha (fração total pulverizada - amostr	а
R 04) sem tratamento	123
Figura 5.25 – Fotomicrografia da rocha R01. Minerais. Aumento de 50	
vezes. Luz plana	127
Figura 5.26 - Fotomicrografia da rocha R01. Palagioclásio mais	
preservado. Aumento de 100 vezes. <i>Luz plana</i>	127
Figura 5.27 – Fotomicrografia da rocha R01. Alteração inter-grãos.	
Aumento de 100 vezes. <i>Luz plana</i>	128
Figura 5.28 – Fotomicrografia da rocha R01. Alteração inter-grãos.	
Aumento de 100 vezes. Nicóis cruzados	128

Figura 5.29 - Fotomicrografia da rocha R01. Microclina mais preservad	la.
Aumento de 50 vezes. <i>Luz plana</i>	129
Figura 5.30 - Fotomicrografia da rocha R02. Profundidade 24,4m.	
Aumento de 25 vezes. <i>Luz plana</i>	130
Figura 5.31 - Fotomicrografia da rocha R02. Zircão. Aumento de 100	
vezes. Luz plana	130
Figura 5.32 - Fotomicrografia da rocha R02. Indicação de alteração	
hidrotermal, intemperismo atuando de dentro para fora do grão de	
plagioclásio. Aumento de 50 vezes. <i>Luz plana</i>	131
Figura 5.33 - Fotomicrografia da rocha R02. Microclina se alterando po	or
hidrotermalismo. Aumento de 50 vezes. <i>Luz plana</i>	131
Figura 5.34 - Fotomicrografia da rocha R02. Plagioclásio mais alterado)
que a microclina. Aumento de 50 vezes. <i>Luz plana</i>	132
Figura 5.35 - Fotomicrografia da rocha R03. É a amostra mais alterada	1.
Aumento de 100 vezes. <i>Luz plana</i>	133
Figura 5.36 - Fotomicrografia da rocha R03. Zircão e feldspatos muito	
transformados. Grande quantidade de epidoto. Aumento de 100 vezes	-
Luz plana	133
Figura 5.37 - Fotomicrografia da rocha R03. Titanita. Aumento de 50	
vezes. Luz plana	134
Figura 5.38 - Fotomicrografia da rocha R04. Biotita dando origem a	
epidoto e clorita. Aumento de 200 vezes. <i>Luz plana</i>	135
Figura 5.39 - Fotomicrografia da rocha R04. Biotita dando origem a	
epidoto e clorita. Aumento de 200 vezes. Nicóis cruzados	135
Figura 5.40 - Fotomicrografia da rocha R04. Profundidade 25,8m.	
Muscovita dentro do plagioclásio e presença de epidoto. Aumento de 5	50
vezes. Luz plana	136
Figura 5.41 – Fotomicrografia do solo Marrom. Macroporo (1mm) em	
forma de canal. Aumento de 25 vezes. <i>Luz plana</i>	140
Figura 5.42 – Fotomicrografia do solo Marrom. Óxidos precipitados.	
Aumento de 25 vezes. <i>Luz plana</i>	141
Figura 5.43 – Fotomicrografia do solo Marrom. Freqüência alta de plas	ma.
Aumento de 50 vezes. <i>Luz plana</i>	141

Figura 5.44 – Fotomicrografia do solo Laranja. Presença de microporos. Aumento de 25 vezes. Luz plana 142 Figura 5.45 – Fotomicrografia do solo Laranja. Alta porosidade do solo. 143 Aumento de 25 vezes. Luz plana Figura 5.46 – Fotomicrografia do solo Laranja. Pedotúbulo. Aumento de 143 25 vezes. Luz plana Figura 5.47 – Fotomicrografia do solo Amarelo. Plagioclásio. Aumento de 144 25 vezes. Luz plana Figura 5.48 – Fotomicrografia do solo Amarelo. Plagioclásio. Aumento de 200 vezes. Luz plana 145 Figura 5.49 – Fotomicrografia do solo Amarelo. Epidoto. Aumento de 25 vezes. Luz plana 145 Figura 5.50 – Fotomicrografia do solo Branco. Quartzo. Aumento de 25 vezes. Nicóis cruzados 146 Figura 5.51 – Fotomicrografia do solo Branco. Mineral se alterando. Aumento de 25 vezes. Nicóis cruzados 147 Figura 5.52 – Fotomicrografia do solo Branco. Porosidade. Aumento de 25 vezes. Luz plana 147 Figura 5.53 – Evolução microestrutural do perfil estudado 151 Figura 5.54 – Contagem de microrganismos viáveis e cultiváveis no meio TSA 10% - valores médios 153 Figura 5.55 - Atividade microbiana degradadora total determinada pelo método do FDA - valores médios 154 Figura 5.56 – Desagregabilidade - corpos-de-prova colocados sobre pedra porosa no início do ensaio por imersão progressiva - água na altura da base 156 Figura 5.57 – Desagregabilidade - corpos-de-prova após 30 minutos -156 nível d'água a 1/3 da altura total do corpo Figura 5.58 – Desagregabilidade - corpos-de-prova após 45 minutos do início do ensaio - nível d'água a 2/3 da altura total do corpo 156 Figura 5.59 – Desagregabilidade - corpos-de-prova após 60 minutos do início do ensaio - totalmente submersos 157

Figura 5.60 – Desagregabilidade - corpos-de-prova após 24 horas do início do ensaio - totalmente submersos 157 Figura 5.61 – Desagregabilidade - corpos-de-prova logo após a inundação no início do ensaio por imersão total desde o início 158 Figura 5.62 – Desagregabilidade por imersão total desde o início após 15 158 minutos Figura 5.63 – Desagregabilidade por imersão total desde o início após 30 minutos 158 Figura 5.64 – Desagregabilidade por imersão total desde o início após 45 159 minutos Figura 5.65 – Desagregabilidade por imersão total desde o início após 1 159 hora Figura 5.66 – Desagregabilidade por imersão total desde o início após 24 159 horas Figura 5.67 – Solo Branco: (a) tensão cisalhante x deslocamento, (b) 162 variação de altura durante os ensaios Figura 5.68 – Solo Amarelo: (a) tensão cisalhante x deslocamento, (b) variação de altura durante os ensaios 163 Figura 5.69 – Solo Laranja: (a) tensão cisalhante x deslocamento, (b) 164 variação de altura durante os ensaios Figura 5.70 – Solo Vermelho: (a) tensão cisalhante x deslocamento, (b) 165 variação de altura durante os ensaios Figura 5.71 - Solo Marrom: (a) tensão cisalhante x deslocamento, (b) variação de altura durante os ensaios 166 167 Figura 5.72 – Corpo-de-prova após o cisalhamento Figura 5.73 – Envoltória de resistência assumindo como válido o critério de Mohr-Coulomb 167 Figura 5.74 – Ensaios de cisalhamento direto – curvas tensão cisalhante x deslocamento 168 Figura 5.75 – Variação das alturas dos corpos-de-prova ao longo dos ensaios 169

Figura 6.1 – Correlação polinomial entre as frações dos solos e o índio	e
de intemperismo ba ₁	171
Figura 6.2 – Correlação hiperbólica entre o pH em água dos solos e	
rochas e o índice de intemperismo químico ba 1	172
Figura 6.3 – Correlação logarítmica entre o índice de Perda ao fogo do)S
solos e rochas e o índice de intemperismo químico ba₁	173
Figura 6.4 – Freqüência de plasma (%) x Índice de vazios médio	175
Figura 6.5 – Correlação polinomial entre as frações argila e argila+silte	e a
capacidade de troca catiônica dos solos	176
Figura 6.6 – Porosidade dos solos obtida por diferentes métodos	177
Figura 6.7 – Envoltórias de resistência na forma potencial	178
Figura 6.8 – Correlações lineares entre os parâmetros c' e ϕ ' e alguns	
índices propostos de quantificação do intemperismo	180
Figura 6.9 - Correlações lineares entre os parâmetros a e b e alguns	
índices propostos de quantificação do intemperismo	181
Figura 6.10 – (a) Atividade microbiana degradadora total (FDA); (b) Te	or
de matéria orgânica – valores médios	183

Lista de tabelas

Tabela 4.1 – Ensaios realizados	57
Tabela 4.2 – Resumo do programa de ensaios de cisalhamento direto	83
Tabela 4.3 – Dados dos corpos-de-prova utilizados nos ensaios de	
cisalhamento direto	86
Tabela 5.1 – Resultados dos ensaios de caracterização física	88
Tabela 5.2 – Valores médios dos ensaios de caracterização física	93
Tabela 5.3 - Índices físicos médios obtidos por correlação	93
Tabela 5.4 – Porosidade por injeção de mercúrio	102
Tabela 5.5 – Classificação dos espaços porosos.	103
Tabela 5.6 - Distribuição de poros em porcentagem	105
Tabela 5.7 – Análise química total por fluorescência de raios-X	107
Tabela 5.8 – Análise química parcial – complexo sortivo e ataque sulfu	úrico1
Tabela 5.9 – pH e matéria orgânica	114
Tabela 5.10 – Caracterização mineralógica do material retido na pene	ira
n° 200 (frações pedregulho e areia)	117
Tabela 5.11 – Minerais identificados por difratometria de raios-X	124
Tabela 5.12 – Descrição petrográfica das lâminas de rocha	137
Tabela 5.13 – Resumo da descrição micromorfológica	149
Tabela 5.14 - Microrganismos viáveis e cultiváveis no meio TSA 10%	152
Tabela 5.15 – Atividade microbiana degradadora total	154
Tabela 5.16 – Resumo dos ensaios de cisalhamento direto	168
Tabela 6.1 – Correlações físico químicas propostas	173
Tabela 6.2 – Porcentagem de plasma observada na microscopia óptic	a,
porcentagem de fração fina obtida nos ensaios granulométricos e índio	ce
de vazios médio dos solos	174
Tabela 6.3 - Valores médios de capacidade de troca catiônica para ca	da
solo	175

Tabela 6.4 – Porosidade dos solos obtida por diferentes métodos	176
Tabela 6.5 – Equações potenciais propostas para os ensaios de	
cisalhamento direto	179
Tabela 6.6 – Resumo dos parâmetros dos ensaios de cisalhamento	
direto	179
Tabela 6.7 – Comparação entre os coeficientes de correlação (R ²)	180

Lista de símbolos e abreviações

- # = diâmetro da abertura da malha da peneira
- % = porcentagem
- ° = graus
- ABNT = Associação Brasileira de Normas Técnicas
- Al = alumínio
- Al⁺³ = cátion de Alumínio
- ASTM = American Society for Testing and Materials
- **ba**₁ = índice de intemperismo químico
- c', ϕ ' = parâmetros efetivos de resistência no cisalhamento direto
- Ca⁺² = cátion de cálcio
- CNPS = Centro Nacional de Pesquisa de Solos
- CTC = capacidade de troca catiônica
- DCMM = Departamento de Ciência dos Materiais e Metalurgia
- DEC = Departamento de Engenharia Civil
- e = índice de vazios
- e_m = índice de vazios médio
- EMBRAPA= Empresa Brasileira de Pesquisas Agrárias
- FDA = Diacetato de Fluoresceína
- F.f. = Fração fina do solo (argila + silte)
- Gs = densidade relativa dos grãos
- H⁺= cátion de hidrogênio
- h = hora
- Hg = mercúrio
- la = índice de atividade de Skempton
- IP = índice de Plasticidade
- K⁺ = cátion de potássio
- kg = kilograma
- km = kilômetro
- kPa = kilopascal

L = litro LL = limite de liquidez log = logaritmo LP = limite de plasticidade; m= metro Mg⁺² = cátion de magnésio mL= mililitro mm= milímetro n = porosidade P.F. = índice de perda ao fogo

- pH = potencial de hidrogenização
- S = grau de saturação
- s = segundo
- T = capacidade de troca catiônica
- TSA = Tryptone Soya Agar
- UFC = Unidade Formadora de Colônia
- w_{nat} = umidade natural
- β = parâmetro de quantificação do intemperismo químico
- δh= deslocamento horizontal
- δv = deslocamento vertical
- γ = peso específico
- γd = peso específico seco
- γn = peso específico natural
- γw = peso específico da água
- θ= teor de umidade volumétrico
- ρ s = massa específica dos grãos de solo
- ρw = densidade da água
- σ = tensão normal
- τ= tensão cisalhante

"Apliquei-me a conhecer a sabedoria e a considerar a fadiga que se realiza sobre a terra, pois o homem não conhece repouso, nem de dia, nem de noite. Observei o conjunto da obra de Deus e percebi que o homem não consegue descobrir tudo o que acontece debaixo do sol. Por mais que o homem se afadigue em pesquisar, não chega a compreendê-la. E mesmo que o sábio diga que a conhece, nem por isso é capaz de entendê-la."